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Abstract
We consider aD-dimensional fluid membrane in a(D + 1)-dimensional
embedding space, subject to quantum fluctuations. The corresponding action
is invariant under coordinate transformations and depends only on the shape of
the membrane and its variation, neglecting tangential degrees of freedom. We
calculate the resulting field theory to one loop order in aD = ε expansion and
find a quantum transition even atT = 0.

PACS numbers: 87.16.Dg, 05.30.−d, 68.35.Rh

1. Introduction

Fluid membranes, like biomembranes, belong to the classical world—there is no need to
take quantum fluctuations into consideration since typical temperatures are high and sizes
are large. Nevertheless, we might reduce temperature down to zero and increase ¯h in
a Gedankenexperiment and study the quantum fluctuations of a (non-relativistic) flexible
membrane. The most important feature of the resulting model is a second-order quantum
transition at a finite ¯h from an almost flat to a crumpled phase, contrary to the thermal case,
where the membrane remains always in the crumpled phase [1]. Ingredients of the action
describing the quantum membrane are a kinetic energy term, surface tension and the Canham–
Helfrich curvature energy [2]. The latter elastic term disfavours curved configuration of the
membrane and is proportional to the square of the mean curvature, integrated over the surface
of the membrane. The action should not depend on the internal coordinates which are used to
parametrize the surface—it should be a functional of the geometry of the membrane only.

Our model serves as a toy model for quantum interfaces like the helium liquid–vapour
interface at very low temperatures [3, 4]. It is remarkable that He3 enriches at a He4 interface
and acts as a surfactant, lowering the surface tension of the He4 interface [4]. Therefore, the
next-leading curvature terms become relevant. The He3 film on top of the He4 bulk could be
in fact a suitable candidate for the quantum membrane under investigation. It is, however,
unlikely that the predicted second-order phase transition from a flat to a crumpled interface
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(at finite h̄) can be observed experimentally. The surface tension of the He-system is still
non-zero, and moreover, there is no direct way to change ¯h in an experiment. Nevertheless, it
might be possible by changing the He3 concentration to tune the system closer to the transition
point.

So far, non-relativistic quantum membranes with curvature stiffness and surface tension
were discussed in [5] at fixed dimensionD = 2 of the membrane andd = 3 of the embedding
space and in [6] for an infinite dimensional embedding spaced → ∞. Extending these results
we study the quantum fluctuations of a membrane in a systematicD = ε expansion and find
a fixed point at zero temperature and finite ¯h (for D > 0), which is not seen by [5].

2. The model

Following [5] we start from the (imaginary time) action

S0 =
∫

dt dDσ
√
g

(
1

2ν
(∂tX)2 + r +

2

α
H 2

)
(2.1)

where X(σ, t) describes the time-dependentD-dimensional surface embedded in a
(D + 1)-dimensional Euclidean space. Henceσ is aD-dimensional set of internal coordinates
which parametrize the surface. dDσ

√
g is the invariant element of area,H is the mean

curvature, 1/ν is the mass density,r is the surface tension and 1/α is the bending rigidity.
The action (2.1) only makes sense in Lagrangian coordinates, i.e. coordinates which follow
the elements of fluid. Then,X(σ, t) is (for fixed σ ) the trajectory of an element of fluid
and∂tX the corresponding velocity. The velocity might be decomposed into a normal part
v⊥ = N · ∂tX and the tangential partsui = ∂iX · ∂tX, whereN is the normal vector and
∂iX = ∂X/∂σ i are the tangential vectors (see e.g. [7, 8]). The normal velocityv⊥ allows
for a geometrical interpretation—it encodes the variations of the shape of the membrane,
whereas the tangential velocity simply generates reparametrizations of the surface (coordinate
transformations). Indeed, a purely tangential velocity field leaves the shape of the membrane
unchanged and, therefore, belongs to degrees of freedom beyond the geometric ones1.

Instead of using action (2.1) and taking care of the tangential degrees of freedom, we
write down a simplified action, depending only on the shape of the membrane and its variation
(with conveniently chosen coupling constants)

S0/h̄ =
∫

dt dDσ
√
g

(
λ

2h̄
v2
⊥ +

r

h̄
+

2

h̄λ
H 2

)
. (2.2)

It can be seen easily thatv⊥ is really a scalar under generaltime-dependent coordinate
transformationsσ → σ(σ ′, t). Consequently, the actionS0 itself is invariant under
any time-dependent coordinate transformation. To calculate the partition functionZ =∫
D[X] exp(−S0/h̄) and related expectation values, we have to sum over all physically

distinct surfacesX(σ, t) in a reparametrization-invariant manner. Being far from trivial
(see [9], the quantum case does not pose an extra complication), we have to restrict the
discussion of the measure problem to few remarks. At first, we have to choose a certain
representation of the surfaces (gauge fixing) in order to avoid over-counting of surfaces
with identical shapes, but different coordinate systems. A common and practical choice is
a representation of the surface in terms of a (time dependent) height variablef (x, t)—the
Monge representation (x is aD-dimensional Euclidean vector)

X(x, t) = (x, f (x, t)) (2.3)
1 The divergence of the tangential velocity field, however, is fixed by the (geometrical) condition 2Hv⊥ = Diui in
case of an incompressible membrane.
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which is connected to the Lagrangian coordinates by a particular time-dependent coordinate
transformation. We convert the action (2.2) into the Monge representationusingv⊥ = ∂tf/

√
g

(whereg = 1 + (∇f )2) and obtain

S0/h̄ =
∫

dt dDx

[
λ

2h̄

(∂t f )
2

√
g

+
r

h̄

√
g +

1

2h̄λ

√
g

(
∇ ·

(
1√
g

∇f

))2
]

=
∫

dt dDx

[
λ

2h̄
(∂tf )

2 +
r

2h̄
∂if ∂if +

1

2h̄λ
(∂2f )2 (2.4)

− λ

4h̄
(∂tf )

2∂if ∂if − r

8h̄
∂if ∂if ∂j f ∂j f

− 1

4h̄λ
∂if ∂if (∂

2f )2 − 1

h̄λ
∂if ∂jf ∂i∂jf ∂2f

]
+ O(f 6)

wherei, j = 1, . . . ,D.2 The corresponding invariant measureD[f ] differs from the naive
measure∝ ∏

x

∫
df (x) by the so called Fadeev–Popov determinant and the Liouville term,

which, however, contribute to two-loop and higher orders only. To one-loop order, we may
safely use the naive measure instead [9]. The lower critical dimension of the theory isD = 0,
where the coupling constants in front of the kinetic energy and in front of the curvature energy
become marginal, as can be seen from the dimensions of the coupling constants(L = length),
which areh̄ ∼ LD andr ∼ L−2 (λ is rendered dimensionless,t ∼ L2). Therefore, we have
to calculate the quantum fluctuations of (2.4) in a double ¯h andD = ε expansion, which
is done here to one-loop order with the help of dimensional regularization and the minimal
subtraction scheme in analogy with [10]. The surface tensionr is a relevant parameter of the
theory and is zero right at the critical point. In fact, a non-zeror imposes a finite correlation
length ξ = r−1/2 on the propagator of action (2.4). Not included in the action (2.4) are
the integral over the scalar curvatureR (which does not yield a contribution to one-loop
order and which is a topological invariant forD = 2) and a boundary term—the cross term
2

∫
dtdDx

√
g v⊥H = − ∫

dt∂tA, whereA is the surface area.

3. Field theory

The bareT = 0 two-point vertex function�0,2(q, ω) reads (denoting from now on bare
quantities with a subscript 0)

�0,2(q, ω) = λ0

h̄0
ω2 +

r0

h̄0
q2 +

1

h̄0λ0
q4 +

ω2

2
λ0(r0λ0)

ε/2Iε − q2

2 + ε
r0(r0λ0)

ε/2Iε

+ q4
(

1

2
+

2

ε

)
1

λ0
(r0λ0)

ε/2Iε (3.1)

whereIε = (4π)−ε/2−1/2�(1− ε/2)�(ε/2 + 1/2)/�(1 +ε/2) (Iε is finite in the limitε → 0).

We introduce renormalized couplings ¯h, λ, r by h̄0 = µ−εh̄Zh̄/Iε , r0 = Zrr andλ0 = Zλλ

2 The action (2.4) differs from the one used in [5] by a wrong sign in front of the first vertex. The wrong sign,
however, does not affect any consequence drawn by [5] (for zero temperature), since the authors study the field theory
not at the lower critical dimension, but at the dimensionD = 2, where the flow of the coupling constants is mainly
determined by their naive dimensions.
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(µ is an arbitrary momentum scale) and require the renormalized vertex function

�2(q, ω) = µεIε

h̄

(
Zλ

Zh̄

λω2 +
Zr

Zh̄

rq2 +
1

λZλZh̄

q4

+
ω2

2
λh̄Zλ − q2

2 + ε
rh̄Zr + q4

(
1

2
+

2

ε

)
h̄

λZλ

)
(3.2)

to be finite in the limitε → 0. We findZh̄ = Zλ = Zr = 1 + h̄/ε + O(h̄2). The RG-equation
is readily derived from the fact that the bare quantities do not depend on the momentum scale
µ, yielding

(µ∂µ + β(h̄)∂h̄ + γ r∂r + ζλ∂λ)�2(q, ω) = 0 (3.3)

with the beta-functionβ(h̄) = h̄(ε − h̄). The theory has an ultraviolet stable fixed point
(not seen by [5]) ¯h∗ = ε which corresponds to a quantum-phase transition at afinite h̄

(for D > 0 andT = 0) from a smooth phase for small ¯h to a crumpled phase for ¯h > h̄∗.
The main effect of quantum fluctuations on the statistics of membranes is a shift of the lower
critical dimension fromD = 2 to D = 0. For slightly larger dimensions a quantum-phase
transition takes place at a finite ¯h∗. We expect that this picture remains true up to the physical
dimensionD = 2, although the numerical accuracy for the one-loop critical exponents
(not presented in this short communication) should be quite limited.
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Appendix A. Details of the calculation

The bare two-point vertex function reads

�0,2(q, ω) = λ

h̄
ω2 +

r

h̄
q2 +

1

h̄λ
q4 − λ

2h̄
ω2 I2− λ

2h̄
q2 I1 − r

2h̄
q2 I2− r

h̄ε
q2 I2

− 1

2h̄λ
q2 I3 − 1

2h̄λ
q4 I2 − 2

h̄λε
q2 I3 − 2

h̄λε
q4 I2 (A.1)

with the Feynman-integrals

I1 = h̄

∫
dω

2π

dεq

(2π)ε
ω2

λω2 + rq2 + λ−1q4

I2 = h̄

∫
dω

2π

dεq

(2π)ε
q2

λω2 + rq2 + λ−1q4 (A.2)

I3 = h̄

∫
dω

2π

dεq

(2π)ε
q4

λω2 + rq2 + λ−1q4 .

Within dimensional regularization we have
(∫

dω dεq ≡ 0
)

I1 = h̄

λ

∫
dω

2π

dεq

(2π)ε
λω2 + rq2 + λ−1q4 − rq2 − λ−1q4

λω2 + rq2 + λ−1q4

= − r

λ
I2 − 1

λ2 I3. (A.3)
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To evaluateI2, we substituteω → ωq2 and find

I2 = h̄

∫
dεq

(2π)ε
dω

2π

q2

λω2q2 + r + λ−1q2 . (A.4)

Now we are able to perform theq-integration

I2 = − h̄

r

∫
dω

2π

( r

λω2 + λ−1

)1+ε/2
I (A.5)

where

I =
∫

dεk

(2π)ε
−k2

k2 + 1
= 1

(4π)ε/2�(1 − ε/2). (A.6)

With the help of(2π)−1
∫

ds(s2 + 1)−1−ε/2 = (4π)−1/2�(ε/2 + 1/2)/�(1 + ε/2) we obtain

I2 = −h̄(rλ)ε/2Iε (A.7)

where

Iε = 1

(4π)ε/2+1/2

�(1 − ε/2)�(ε/2 + 1/2)

�(1 + ε/2)
. (A.8)

An analogous calculation yields

I3 = −λr
1 + ε

2 + ε
I2 = h̄λr(rλ)ε/21 + ε

2 + ε
Iε . (A.9)

Within a cut-off regularization scheme instead of dimensional regularization additional
divergent terms show up in equation (A.3) and equation (A.9) which can be absorbed by an
additive renormalization of the surface tensionr.
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